Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes.

Citation:

Guofa Cai, Darmawan, Peter , Cui, Mengqi , Chen, Jingwei , Wang, Xu , Eh, Alice Lee-Sie, Magdassi, Shlomo , and Lee, Pooi See. 2016. “Inkjet-Printed All Solid-State Electrochromic Devices Based On Nio/Wo3 Nanoparticle Complementary Electrodes.”. Nanoscale, 8, Pp. 348 - 357.

Abstract:

Nanostructured thin films are important in the fields of energy conversion and storage. In particular, multi-layered nanostructured films play an important role as a part of the energy system for energy saving applications in buildings. Inkjet printing is a low-cost and attractive technol. for patterning and deposition of multi-layered nanostructured materials on various substrates. However, it requires the development of a suitable ink formulation with optimum viscosity, surface tension and evapn. rate for various materials. In this study, a versatile ink formulation was successfully developed to prep. NiO and WO3 nanostructured films with strong adhesion to ITO coated glass using inkjet printing for energy saving electrochromic applications. We achieved a high performance electrochromic electrode, producing porous and continuous electrochromic films without aggregation. The NiO film with 9 printed layers exhibits an optical modulation of 64.2% at 550 nm and a coloration efficiency (CE) of 136.7 cm2 C-1. An inkjet-printed complementary all solid-state device was assembled, delivering a larger optical modulation of 75.4% at 633 nm and a higher CE of 131.9 cm2 C-1 among all solid-state devices. The enhanced contrast is due to the printed NiO film that not only performs as an ion storage layer, but also as a complementary electrochromic layer. [on SciFinder(R)]

Notes:

CAPLUS AN 2015:1841664(Journal; Online Computer File)