Anisotropic localized surface plasmon resonance of vanadium dioxide rods in flexible thermochromic film towards multifunctionality

Citation:

Qiyang Xu, Ke, Yujie , Feng, Chengchen , Chen, Cong , Wen, Zuohao , Wang, Haoran , Sun, Miaoyang , Liu, Xinghai , Liu, Hai , Magdassi, Shlomo , Li, Houbin , Huang, Chi , and Long, Yi . 2021. “Anisotropic Localized Surface Plasmon Resonance Of Vanadium Dioxide Rods In Flexible Thermochromic Film Towards Multifunctionality”. Solar Energy Materials And Solar Cells, 230, Pp. 111163.

Abstract:

Plasmonic thermochromic films are promising for smart window applications. Hereby, we develop a flexible plasmonic thermochromic film towards multifunctionality. The double-layer film consists of a bottom layer of W/Mg co-doped vanadium dioxide (VO2) rods in a polyurethane acrylate matrix and a top layer of hollow silica spheres (HSSs). Based on the finite-difference time-domain (FDTD) method, we demonstrate for the first time, a transverse and a longitudinal mode of VO2 localized surface plasmonic resonance (LSPR) in near- and mid-infrared bands, respectively, and only the transverse mode contributes to the solar energy modulation performance. The film shows a luminous transmittance of 46.2%, a solar energy modulation of 10.8%, and a critical transition temperature of 36.9 °C. The HSSs overcoating enhances the surface hydrophilicity and thermal insulation, which give rise to more favored functionalities for windows.