Publications

2022
Efrat Shukrun Farrell, Siam, Reema , Moshkovitz, May Yam, Avnir, David , Abu-Reziq, Raed , and Magdassi, Shlomo . 2022. 3D-Printed Complex-Shaped Chiral Organosilica Porous Monoliths That Display Enantioselectivity. Additive Manufacturing, 60, Pp. 103265. Abstract
We describe a new process for fabricating chiral organosilica 3D complex structures by combining digital light processing 3D printing with a sol-gel polycondensation process. The fabricated low-density objects have a high surface area with hierarchical porosity based on micropores resulting from the materials' design, and on macropores in the structure resulting from the 3D printing design. Thus, several 3D objects having complex shapes were printed by the polycondensation of 3-acryloxypropyltrimethoxysilane (APTMS) and chiral silane monomers that were obtained by reacting (1R,2R)-cyclohexane-1,2-diamine or (1S,2S)-cyclohexane-1,2-diamine with (3-Isocyanatopropyl)triethoxysilane. The dual-function monomer APTMS enabled both localized photopolymerization and polycondensation. Printed gyroids, cubes, and disk-shaped chiral monoliths successfully revealed the enantioselective adsorption of tryptophan enantiomers. It was found that the macroscopic shape of the monolith affects the adsorption performance and its enantioselectivity. High enantioselectivity was obtained when the objects were formed from a chiral silane synthesized from (1R,2R)-cyclohexane-1,2-diamine: L-tryptophan was adsorbed ∼10 fold higher than D-tryptophan. When the chiral object was fabricated using a chiral silane monomer prepared from (1S,2S)-cyclohexane-1,2-diamine, the enantioselectivity of the adsorption was reversed towards the D-tryptophan isomer. The new approach utilizes the 3D printing methodologies developed here for all-printed enantioselective separation columns; the printed macroporosity facilitates efficient flow, and the meso/microporous walls facilitate enantioselectivity.
Yu Wang, Keneth, Ela Sachyani, Kamyshny, Alexander , Scalet, Giulia , Auricchio, Ferdinando , and Magdassi, Shlomo . 2022. 4D Multimaterial Printing Of Programmable And Selective Light-Activated Shape-Memory Structures With Embedded Gold Nanoparticles. Advanced Materials Technologies, 7, Pp. 2101058. Abstract
4D printing is based on 3D printing of objects that can change their shape upon a proper triggering. Here, a novel approach is reported for fabricating programmable 3D printed objects composed of shape-memory polymers (SMPs) that are activated by light. The light activation of the movement and shape morphing are based on combining gold nanoparticles (AuNPs) as photothermal converters with acrylate-based printing compositions that form an SMP with tunable transition temperatures. The shape change of the printed objects is triggered by remote irradiation with a low-cost LED light at a wavelength specific to the surface plasmon resonance of the embedded AuNPs. The light is converted to heat which enables the shape transition when the temperature reaches the Tg of the polymer. Excellent SMP properties are achieved with shape fixity and recovery ratios over 95%. This material composition and triggering approach enable fabricating programmable light-activated 3D printed structures with a dual transition while tuning the concentration. Furthermore, numerical simulations performed by finite-element analysis result in the excellent prediction of the shape-memory recovery. The presented approach can be applied in remotely controlling morphing, mainly for applications in the fields of actuators and soft robotics.
Ronn Goei, Nguyen, Tam D, Zhang, Xiaoyu , Ong, Amanda Jiamin, Mandler, Daniel , Magdassi, Shlomo , Shi, Zhongqi , and Tok, Alfred Iing Yoong. 2022. Conduction Heat Transfer Switching Using Magnetic Fe X O Y -Decorated Carbon-Based Nanomaterials. European Physical Journal: Special Topics, 231, Pp. 2963–2971. Abstract
Smart windows are used to minimize overall indoor energy consumption for thermal regulation through the modulation of radiant and conducted heat. While the control of thermal radiation can be done effectively by various technologies such as electrochromic, thermochromic, photochromic, etc., the modulation of heat conduction through smart windows remains a very challenging problem to be solved. The main obstacles are the lack of an effective conduction pathway within a double-glazed window and the need for a reliable active thermal switching mechanism. In this work, we introduce a novel idea for modulating heat conduction through a smart window by building thermally conductive pathways via coatings together with a heat transfer switching channel. The thermal switch uses various FexOy-decorated carbon-based nanomaterials that can be turned `ON' or `OFF', thus modulating heat conduction through a window. By applying an external magnetic force, such carbon-based magnetic nanomaterials can be easily moved or aligned within the switching channel to modulate thermal conduction. In this work, FexOy-decorated carbon nanotubes (CNTs) and graphene are developed as a thermal conduction pathway, and a thermal heat switching mechanism is developed and proposed. The FexOy-decorated carbon nanotubes (CNTs) and graphene show excellent heat diffusivity as a thermal conduction pathway coating, through a 2 mm channel gap with a 40 mm distance from the heat source, whilst the thermal conduction switch proposed is shown to effectively modulate thermal conduction through it.
Joel Ming Rui Tan, Farraj, Yousef , Kamyshny, Alexander , and Magdassi, Shlomo . 2022. Fabrication Approaches Of Soft Electronics. Acs Applied Electronic Materials. . Publisher's Version Abstract
The use of conductive materials to be printed/embedded onto/within a polymeric matrix has gained increasing attention in the fabrication of next-generation soft electronics. In this review, we provide a comprehensive overview of the materials and approaches for the fabrication of 2D and 3D conductive structures while focusing on the importance of the compatibility between the particles’ shape, the polymeric matrix type, and the deposition method, along with the target application. The review presents a summary of the main conductive materials and the type of polymeric materials which were utilized for fabricating soft electronic devices that are bendable/twistable and stretchable. It is divided into two sections: Introduction section, which presents briefly conductive materials, polymeric matrix, and fabrication methods, and Fabrication section, presenting the main 6 approaches of fabrication. Each of the fabrication subsections presents the main recent reports in a detailed table. The review is concluded with an Outlook section, describing the current challenges in this field. Despite the progress in the fabrication of 2D bendable/twistable electronic devices toward industrial integration, there is still a need for tailoring and improving the durability and robustness of 3D stretchable electronic devices.
Alexander Kamyshny, Sowade, Enrico , and Magdassi, Shlomo . 2022. Inkjet Ink Formulations: Overview And Fundamentals. Inkjet Printing In Industry, Pp. 93–124.
Anna Pajor-Świerzy, Szczepanowicz, Krzysztof , Kamyshny, Alexander , and Magdassi, Shlomo . 2022. Metallic Core-Shell Nanoparticles For Conductive Coatings And Printing. Advances In Colloid And Interface Science, 299, Pp. 102578. Abstract
The review is focused on bimetallic nanoparticles composed of a core formed by low-cost metal having high electrical conductivity, such as Cu and Ni, and a protective shell composed of stable to oxidation noble metal such as Ag or Au. We present the chemical and physical approaches for synthesis of such particles, as well as the combination of the two, the stability to oxidation of core-shell nanoparticles at various conditions, and the formulation of conductive compositions and their application in conductive coatings and printed electronics.
Tingting Hao, Wang, Shen , Xu, Hongbo , Zhang, Xiang , Magdassi, Shlomo , Pan, Lei , Song, Ying , Li, Yao , and Zhao, Jiupeng . 2022. Novel Transparent Tio2/Agnw-Si(Nh2)/Pet Hybrid Films For Flexible Smart Windows. Acs Applied Materials And Interfaces, 14. Abstract
The application of flexible indium tin oxide (ITO)-free electrochromic devices (FCDs) has always been a research hotspot in flexible electronics. Recently, a silver nanowire (AgNW)-based transparent conductive film has raised great interest as an ITO-free substrate for FCDs. However, several challenges, such as the weak binding of AgNWs to the substrate, high junction resistance, and oxidation of AgNWs, remain. In this paper, a novel method for surface modification of AgNWs with N-aminoethyl-γ-aminopropyltrimethoxysilane [Si(NH2)] solution is proposed to enhance the bonding with the flexible substrates and the active materials, thereby inhibiting the delamination of AgNWs from the substrate and reducing the high junction resistance between nanowires. The TiO2/AgNW-Si(NH2)/poly(ethylene terephthalate) (PET) films show outstanding mechanical properties, of which the resistance remains almost unchanged after mechanical bending of 5000 cycles (R/R0 3.6%) and repeated peeling off cycles with 3M tape 100 times (R/R0 6.0%). In addition, we found that the oxygen-containing groups on the TiO2/AgNW-Si(NH2)/PET surface form hydrogen bonds with the TiO2 sol, resulting in tight contact between the TiO2 sol and the AgNWs, which prevents the AgNWs from oxidation. As a result, the TiO2/AgNW-Si(NH2)/PET film exhibited long-time aging (R/R0 4.9% in the air for 100 days) stability. A FCD was constructed with the TiO2/AgNW-Si(NH2)/PET film, which showed excellent electrochromic performance (94% retention) after 5000 bending cycles, indicating high stability and mechanical flexibility. These results present a promising solution to the transparent conductive films for flexible energy devices.
Soledad Roig-Sanchez, Kam, Doron , Malandain, Nanthilde , Sachyani-Keneth, Ela , Shoseyov, Oded , Magdassi, Shlomo , Laromaine, Anna , and Roig, Anna . 2022. One-Step Double Network Hydrogels Of Photocurable Monomers And Bacterial Cellulose Fibers. Carbohydrate Polymers, 294, Pp. 119778. Abstract
Soft-tissue replacements are challenging due to the stringent compliance requirements for the implanted materials in terms of biocompatibility, durability, high wear resistance, low friction, and water content. Acrylate hydrogels are worth considering as soft tissue implants as they can be photocurable and sustain customized shapes through 3D bioprinting. However, acrylate-based hydrogels present weak mechanical properties and significant dimensional changes when immersed in liquids. To address these obstacles, we fabricated double network (DN) hydrogels composed of polyacrylic acid (PAA) and bacterial cellulose nanofibers (BCNFs) by one fast UV photopolymerization step. BCNFs/PAA hydrogels with a 0.5 wt% BCNFs content present an increased stiffness and a lower, non-pH-dependent swelling than PAA hydrogels or PAA hydrogels with cellulose nanocrystals. Besides, BCNFs/PAA hydrogels are biocompatible and can be frozen/thawed. Those characteristics endorse these hybrid hydrogels as potential candidates for vascular and cartilage tissue implants.
Xiuqi Zan, Wang, Xinyu , Shi, Kaihua , Feng, Yan , Shu, Jun , Liao, Jun , Wang, Richu , Peng, Chaoqun , Magdassi, Shlomo , and Wang, Xiaofeng . 2022. Three-Dimensional Porous Tungsten Via Dlp 3D Printing From Transparent Ink. Journal Of Physics D: Applied Physics, 55, Pp. 444004. Abstract
Tungsten, an essential refractory metal material, has the characteristics of high melting and boiling points, high hardness, low expansion coefficient, and low vapor pressure. An indirect strategy to print three-dimensional (3D) refractory metal materials via digital light processing (DLP) followed by a post-treatment process was proposed. To analyze this strategy, a transparent ink with tungsten salts was developed, printed into a 3D precursor via DLP, and subsequently transited into 3D porous tungsten. The ultraviolet rheological properties and stability of the ink, transition process from the precursor to a 3D article, and the properties of the obtained 3D porous tungsten were investigated. This ink was preferable for DLP 3D printing, possessing consistency, stability and favorable absorbance at the wavelength of 385 nm. With increasing temperature, the weight of the tungsten salt in the 3D precursor decreased by 8.97% and was transited to tungsten oxide below 460 °C, reduced to pure nano-sized tungsten at approximately 700 °C, and finally sintered into porous articles. The organics initially contributed to polymerization during printing as well as reduction as a carbon reducer after pyrolysis. The pore size distribution of porous tungsten is nonlinear or multimodal, depending on the final sintering temperature. At 1200 °C, two distinct peaks are observed in the pore distribution curves of the products. At 1400 °C, the small pore as a whole decreases from approximately 100-1000 nm. Correspondingly, the relative density of the samples increased with temperature.
Zhenxing Wang, Zhao, Hongli , Chen, Kaicha , Zhou, Fangfang , Magdassi, Shlomo , and Lan, Minbo . 2022. Two-Dimensional Mesoporous Nitrogen-Rich Carbon Nanosheets Loaded With Ceo2 Nanoclusters As Nanozymes For The Electrochemical Detection Of Superoxide Anions In Hepg2 Cells. Biosensors And Bioelectronics, 209, Pp. 114229. Abstract
Two-dimensional (2D) porous carbon-based composite nanosheets loaded with metal oxide nanoclusters are expected to be promising electrocatalysts for high-performance electrochemical sensors. However, for this complicated composite material, strict reaction conditions and complex synthesis steps limit its general application in electrochemical detection. Here we present a facile method to fabricate 2D mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters (2D-mNC@CeO2), for fabricating superoxide anions (O2•−) electrochemical sensor. The method is based on block copolymers self-assembly and the affinity of polydopamine to metal ions to obtain organic-inorganic hybrid, which can be directly converted into 2D-mNC@CeO2 through carbonization strategy without structural deterioration. Characterizations demonstrate that the 2D-mNC@CeO2 owned the 2D N-doped carbon structure with an interlinked hierarchical mesoporous and the uniformly dispersed CeO2 nanoclusters on the surface. Benefitted from the unique structure, the 2D-mNC@CeO2 shortens electron transfer distance, enhances mass transfer efficiency, exposes numerous active sites, and obtain a high Ce3+/Ce4+ ratio for improving electrocatalytic performance. The 2D-mNC@CeO2/SPCEs sensors for O2•− detection has a detection limit of 0.179 μM (S/N = 3) and sensitivity of 401.4 μA cm-2 mM-1. The sensors can be applied to capture electrochemical signals of O2•− released from HepG2 cells, demonstrating the application potential of the sensors to monitor O2•− in biological fields.
Doron Kam, Levin, Ido , Kutner, Yinnon , Lanciano, Omri , Sharon, Eran , Shoseyov, Oded , and Magdassi, Shlomo . 2022. Wood Warping Composite By 3D Printing. Polymers, 14, Pp. 733. Abstract
Wood warping is a phenomenon known as a deformation in wood that occurs when changes in moisture content cause an unevenly volumetric change due to fiber orientation. Here we present an investigation of wood warped objects that were fabricated by 3D printing. Similar to natural wood warping, water evaporation causes volume decrease of the printed object, but in contrast, the printing pathway pattern and flow rate dictate the direction of the alignment and its intensity, all of which can be predesigned and affect the resulting structure after drying. The fabrication of the objects was performed by an extrusion-based 3D printing technique that enables the deposition of water-based inks into 3D objects. The printing ink was composed of 100% wood-based materials, wood flour, and plant-extracted natural binders cellulose nanocrystals, and xyloglucan, without the need for any additional synthetic resins. Two archetypal structures were printed: cylindrical structure and helices. In the former, we identified a new length scale that gauges the effect of gravity on the shape. In the latter, the structure exhibited a shape transition analogous to the opening of a seedpod, quantitatively reproducing theoretical predictions. Together, by carefully tuning the flow rate and printing pathway, the morphology of the fully dried wooden objects can be controlled. Hence, it is possible to design the printing of wet objects that will form different final 3D structures.