Publications

2015
Shlomo Magdassi, Zwicker, Camille , Mhaisalkar, Subodh Gautam, Mandler, Daniel , Levi, Lihi , and Azoubel, Suzanna. . 2015. Spectrally Selective Solar Thermal Coating Combining A Light-Absorbing Coating And An Infrared Reflecting Layer Positioned On Top Of The Absorber Coating.. Abstract
The invention relates to a light-absorbing element coated on at least a region of its surface with a film of at least one light-absorbing material, the light-absorbing material being assocd. with at least one binder material, the film being 1 - 20 μm thick and having light absorption of at least 90%. The invention also relates to a device comprising a light-absorbing element. The invention also claims a thermosolar device comprising a light-absorbing element. The invention also relates to a method of fabricating a light-absorbing film on a surface region of a substrate, the method comprising: (a) forming on a surface region at least one absorbing layer comprising: (I) a light-absorbing material; and (II) a polymerizable binder resin; (b) heating the at least one absorbing layer to induce polymn. of the binder resin; and (c) optionally forming at least one IR radiation reflecting layer on the polymd. binder. [on SciFinder(R)]
Suzanna Azoubel, Cohen, Rina , and Magdassi, Shlomo . 2015. Wet Deposition Of Carbon Nanotube Black Coatings For Stray Light Reduction In Optical Systems.. Surface & Coatings Technology, Pp. 21. . Publisher's Version Abstract
Stray light, also known as optical noise, affects the performance of many optical devices. It can be reduced to a tolerable level by well-designed and well-baffled system or/and by using functional black coatings that are fabricated in a complex and costly process. Carbon nanotubes (CNTs) absorb light strongly, making them an ideal candidate for realizing a super black coating. CNT coatings were formed by spraying formulations composed of a silicon binder and low cost multiwalled CNTs on a pre-heated aluminum plate. The diffuse reflectance of the coatings in the VIS range (350-800nm) was in the range of 2.6-5.11%, depending on the MWCNT concentration in the coating. In the NIR range (850-2400nm), the reflectance values were in the range of 4-6.5%, however the dependence on MWCNT concentration was not very significant. Excellent adhesion to the aluminum substrates was achieved, for coatings with CNT concentration below 15%, while still having very low reflectance, even at temperature c